Oscillatory pericellular proteolysis and oxidant deposition during neutrophil locomotion.

نویسندگان

  • A L Kindzelskii
  • M J Zhou
  • R P Haugland
  • L A Boxer
  • H R Petty
چکیده

To better understand the mechanism of leukocyte migration in complex environments, model extracellular matrices were prepared using gelatin, Hanks' solution, Bodipy-BSA (fluorescent upon proteolysis), and dihydrotetramethylrosamine or hydroethidine (fluorescent upon oxidation). Using quantitative microfluorometry, neutrophil-mediated extracellular pulses of reactive oxygen metabolites (ROMs) and pericellular proteolysis were periodically observed showing that these functions occur as quantal bursts. However, chronic granulomatous disease neutrophils, which do not produce ROMs, did not display ROM deposition. Matrices show an alternating pattern of green (proteolytic) and red (oxidative) fluorescence, indicating these functions are out of phase. Electric fields phase-matched with metabolic oscillations, which increase the amplitude of intracellular NAD(P)H oscillations, increase ROM deposition and pericellular proteolysis; this further supports the link between intracellular chemical oscillators and extracellular functions. This phase relationship may allow ROMs to inactivate protease inhibitors, followed by protease activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue.

In vitro studies suggest that leukocytes locomote in an ameboid fashion independently of pericellular proteolysis. Whether this motility pattern applies for leukocyte migration in inflamed tissue is still unknown. In vivo microscopy on the inflamed mouse cremaster muscle revealed that blockade of serine proteases or of matrix metalloproteinases (MMPs) significantly reduces intravascular accumul...

متن کامل

Pericellular proteolysis by neutrophils in the presence of proteinase inhibitors: effects of substrate opsonization

Inflammatory cells are capable of degrading extracellular matrix macromolecules in vivo in the presence of proteinase inhibitors. We and others have hypothesized that such proteolysis is permitted in large part by mechanisms operative in the immediate pericellular environment, especially at zones of contact between inflammatory cells and insoluble matrix components. To further test this hypothe...

متن کامل

Simulation and optimization of live fish locomotion in a biomimetic robot fish

This paper presents simplified hydrodynamics model for a biomimetic robot fish based on quantitative morphological and kinematic parameters of crangiform fish. The motion of four Pangasius sanitwongsei with different length and swimming speed were recorded by the digital particle image velocimetry (DPIV) and image processing methods and optimal coefficients of the motion equations and appropria...

متن کامل

Receptor-independent Role of Urokinase-Type Plasminogen Activator in Pericellular Plasmin and Matrix Metalloproteinase Proteolysis during Vascular Wound Healing in Mice

It has been proposed that the urokinase receptor (u-PAR) is essential for the various biological roles of urokinase-type plasminogen activator (u-PA) in vivo, and that smooth muscle cells require u-PA for migration during arterial neointima formation. The present study was undertaken to evaluate the role of u-PAR during this process in mice with targeted disruption of the u-PAR gene (u-PAR-/-)....

متن کامل

The urokinase receptor is required for human monocyte chemotaxis in vitro.

Mononuclear phagocytes (Mphi) produce urokinase-type plasminogen activator (uPA) and also express a specific cell-surface receptor for urokinase, uPAR. The concomitant expression of these proteins provides a mechanism by which Mphi can degrade extracellular matrix proteins during directed cell migration. In this study, we sought to determine if uPAR plays a role in Mphi chemotaxis that is disti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 74 1  شماره 

صفحات  -

تاریخ انتشار 1998